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ABSTRACT 

The rise of in situ plankton imaging systems, particularly high volume imagers 

such as the In Situ Ichthyoplankton Imaging System (ISIIS), has increased the need for 

fast processing and accurate classification tools that can identify a high diversity of 

organisms and non-living particles of biological origin. Previous methods for automated 

classification have yielded moderate results that either can resolve few groups at high 

accuracy, or many groups at relatively low accuracy. However, with the advent of new 

deep learning tools such as Convolutional Neural Networks (CNNs), the automated 

identification of plankton images can be vastly improved. Here we describe a image 

processing procedure that includes pre-processing, segmentation, classification, and post-

processing, for the accurate identification of 108 classes of plankton using Spatially-

Sparse Convolutional Neural Networks. Following a filtering process to remove images 

with low classification scores, a fully random evaluation of the classification showed that 

average precision was 84% and recall was 40% for all groups. Reliably classifying rare 

biological classes was difficult, so after excluding the 12 rarest taxa, classification 

accuracy for the remaining biological groups became >90%. This method provides proof 

of concept for the effectiveness of an automated classification scheme using deep 

learning methods, which can be applied to a range of plankton or biological imaging 

systems, with the eventual application in a variety of ecological monitoring and fisheries 

management contexts.  
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INTRODUCTION 

Much of plankton ecology has been focused upon questions surrounding the 

identity, quantity, and spatial-temporal variability of planktonic organisms in aquatic 

systems, which has historically been addressed by various net-based sampling systems 

(Wiebe and Benfield 2003). Although many advanced nets were designed to overcome 

limitations in horizontal or vertical resolution in sampling, the emergence of plankton 

imaging systems represents a significant advancement for plankton ecology. Current 

imaging systems are able to quantify organisms within fine spatial and temporal scales, 

with some systems imaging organisms undisturbed and in their natural environment [e.g., 

Video Plankton Recorder (VPR; Davis et al. 1992), Shadow Image Particle Profiling 

Evaluation Recorder (SIPPER; Samson et al. 2001), ZOOplankton VISualization and 

Imaging System (ZOOVIS; Benfield et al. 2003), In Situ Ichthyoplankton Imaging 

System (ISIIS; Cowen and Guigand 2008), Underwater Vision Profiler 5 (UVP5; 

Picheral et al. 2010). Note that the SIPPER samples via an intake tube, and is thus not a 

truly undisturbed sampler]. Research using plankton imaging systems has led to new 

insights into the relationships between species and their fine-scale environment (e.g. 

Benfield et al. 2000, Ashjian et al. 2001), with implications ranging from fine-scale 

aggregation dynamics (Luo et al. 2014), N2 fixation (Davis and McGillicuddy 2006), 

predator-prey interactions (Greer et al. 2013), carbon export (Petrik et al. 2013), and 

global plankton biomass estimates (Biard et al. 2016).  
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Though in situ plankton imaging systems were developed with a goal of reducing 

processing time (very lengthy for physical net samples, which requires sorting and expert 

identification), in reality, analyzing plankton images currently still requires extensive and 

time-consuming manual classification and expert taxonomic knowledge. The tradeoff is: 

human operators’ time vs. classification accuracy vs. taxonomic resolution. Manual 

processing time is typically not reported in papers, but as an example, the manual 

analysis of 50+ taxa of gelatinous zooplankton within 5,500 m3 of water, imaged in 

750,000 frames (13.5 inch square frames with 66 µm pixel resolution; each frame with up 

to 50 organisms) required the equivalent of three full man-years (Luo et al. 2014). 

Classification of pre-processed image segments is slightly faster; Faillettaz et al. (2016) 

reported a manual classification rate of 10,000 images day-1 into 10-15 biotic and abiotic 

classes, but a single multiday cruise can easily generate upwards of 50 million image 

segments. In general, automated classification efforts currently consist of identifying 

small numbers of classes [five to seven classes (Davis et al. 2004; Hu and Davis 2006), 

and three classes (Bi et al. 2015)], but even so, few reach an acceptable benchmark of 

classification accuracy, commonly set at 67-83% (Culverhouse et al. 2003; Hu and Davis 

2005). Alternatively, computer-assisted classification is generally used to achieve higher 

accuracies, which consists of a computer generated set of automated classifications 

followed by fully validating all images manually (Gorsky et al. 2010; Ohman et al. 2012). 

Consequently, it is still very difficult and time-consuming to extract high-accuracy data 
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on many types of plankton, particularly in highly diverse areas, which limits the utility of 

many underwater imaging systems. 

The issues with classification accuracy and speed have been pronounced with the 

In Situ Ichthyoplankton Imaging System (ISIIS; Cowen and Guigand 2008), which is a 

high resolution, large volume imager designed for sampling mesozooplankton. It 

typically images at a rate of 150-185 L s-1, depending on tow speed. Compared with other 

plankton imaging systems (VPR: 10-17 mL s-1, ZOOVIS: 3.6 L s-1, SIPPER, 9.2 L s-1, 

UVP5: 8-20 L s-1), ISIIS records at 10-1000 times the sampling volume, which has 

allowed for studies on rare organisms such as larval fish (Cowen et al. 2013) or large 

gelatinous zooplankton (McClatchie et al. 2012; Luo et al. 2014). Particularly in sub-

tropical zones such as the northern Gulf of Mexico, ISIIS can simultaneously record in-

focus, clear images of hundreds of species, ranging from protists, diatom chains, and 

copepods, to shrimps, larval fish, and medusae. Therefore, in order to properly classify 

organisms within ISIIS images, a classifier that could handle not just a few (< 10) classes, 

but many classes (e.g. 30-150) is necessary. 

Methods for the automated analysis of zooplankton images had early beginnings 

in statistical approaches, e.g., discriminant analysis (Jeffries et al. 1980, 1984), but 

quickly progressed to using machine learning techniques such as artificial neural 

networks (ANNs; Simpson et al. 1992; Culverhouse et al. 1996). Culverhouse et al. 

(1996) designed their ANN system explicitly for dinoflagellates, and were able to 
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identify species with ca. 72% accuracy, which was comparable to human classification 

(Culverhouse et al. 2003). For a slightly broader range of taxonomic classes (five to 

seven classes of phytoplankton and zooplankton), an ANN-type network was combined 

with a support vector machine (SVM) in a dual classification method for VPR images, 

resulting in classification precision rates between 23-95% when tested on the original 

training set (Hu and Davis 2005, 2006). For images from the UVP5, an extensive review 

of different classifiers (including ANN and SVM classifiers) resulted in the adoption of a 

Random Forest (RF) algorithm, which consistently performed the best, even superseding 

the SVM classifier (ZooProcess with PkID; Gorsky et al. 2010; Gasparini 2013). 

However, even with the success of the RF algorithm, most UVP5 images are still fully 

validated by human operators, though there have been some recent efforts towards 

decreasing the amount of manual labor required through the use of filtering methods 

(Faillettaz et al. 2016). In recent years, SVMs have continued to be used, for systems 

such as the SIPPER (active learning with an SVM reduces human labeling efforts; Luo et 

al. 2005) and ZOOVIS (SVM classifier using three classes with > 80% precision; Bi et al. 

2015), while other groups have continued on with RF methods, sometimes with many 

more classes (47 classes, Laney and Sosik 2014; 114 classes, Schmid et al. 2016). 

Nonetheless, for all of these classification algorithms, a highly specific set of pre-

measured features was crucial for successfully training the classifier; this set of extracted 

features could not dynamically change, nor be automatically determined by the classifier 
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itself. Furthermore, while the accepted benchmark for plankton classification accuracy 

(67-83%, Culverhouse et al. 2003) had been met in many classes by different classifiers, 

for biological questions particularly surrounding rare or cryptic species, a high amount of 

error is often untenable. 

Here we present the results of a process to develop an automated classification 

algorithm for ISIIS images using Convolutional Neural Networks (CNNs), a relatively 

new class of methods that has revolutionized the computer vision field in recent years 

(Krizhevsky et al. 2012; LeCun et al. 2015), and which falls within the general category 

known as deep learning. As opposed to conventional machine-learning techniques such 

as artificial neural networks, Random Forest, and support vector machines, deep learning 

tools do not require extensive domain expertise (e.g., plankton imaging) and the careful 

engineering of feature extractors for classification. Instead, they are able to process 

natural data in their raw form, and automatically discover the representations that are best 

suited for classification. We describe a whole image processing ‘pipeline’, which 

includes pre-processing, segmentation, classification, and post-processing. Then, as a 

proof of concept, we apply it to a set of ISIIS images collected in the northern Gulf of 

Mexico. While the described method is highly tuned to images collected by a particular 

instrument, CNNs in general (as well as the machine learning competition we ran to 

generate this solution) are highly versatile, and can be applied to many types of images 

within the biological sciences.  
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METHODS 

Description of instrument 

The In Situ Ichthyoplankton Imaging System (ISIIS; Cowen and Guigand 2008) 

utilizes shadowgraph imaging with a line-scan camera to capture silhouette images of 

particles in a sampled parcel of water. This backlighting technique, with early application 

by Arnold and Nuttal-Smith (1974) and Ortner et al. (1979, 1981), allows for the fine 

taxonomic resolution of transparent organisms (e.g. gelatinous zooplankton) and the 

coarse taxonomic resolution of small, opaque organisms (e.g. copepods). The camera 

used is a 2048-pixel line-scan camera that images over a 13x13-cm field of view and 50-

cm depth of field, with a resultant 66-µm pixel resolution. The output of the imaging is 

recorded as a continuous image that is parsed into square frames (2048 x 2048 pixels) at 

17 frames s-1. While sampling, we target a ship speed of 2.5 m s-1, which results in an 

ISIIS sampling rate of 169 L s-1. However, in practice, this sampling rate can vary from 

150-185 L s-1 with corresponding ship speeds of 2.25-2.75 m s-1. The recorded data are 

ported to the surface via a fiber-optic wire, time-stamped, and saved onto a ship-based 

computer or raid array. 

 

Field sampling 

In July-August 2011, ISIIS was deployed over eight, 6-hr transects during two 

oceanographic cruises onboard the NOAA ship McArthur II in the northern Gulf of 
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Mexico (Fig 1). The sampling plan was designed to capture images of species present 

during the day and night, at various locations and depths, and over multiple months. ISIIS 

sampled in tow-yo undulations from the surface to 130 m depth at the offshore sites, and 

from the surface to 40-60 m depth at the inshore sites.  

 

Image pre-processing 

 ISIIS uses a line-scanning camera with a single row of pixels, each with its own 

unique light sensitivity characteristics; consequently, raw ISIIS images have a slight non-

uniformity in gray-level across the image, despite the uniform distribution of incoming 

light. Furthermore, any dust or particles on the lens appears as vertical lines in the raw, 

square frame (Fig. 3a). These lines and image non-uniformities are corrected in a 

radiometric calibration called “flat-fielding” in which we calculate a calibration frame 

(Fig. 3b) that is subtracted from the raw frame. The calibration is calculated per frame; 

since the objects of interest occupied only a small amount of the frame (based on initial 

tests, we assumed it to be <20%), we ignored those outliers and calculated a column-

averaged frame for calibration. Thus, the resultant frame after flat-fielding is devoid of 

vertical non-uniformities that could bias the segmentation and classification (Fig. 3c). 

Next, in order to equalize the image histogram, we normalized the contrast within 

each frame using the OpenCV 2.4 ‘equalizeHist’ command 

(https://docs.opencv.org/2.4/modules/imgproc/doc/histograms.html). The histogram 

 10 

This article is protected by copyright. All rights reserved.



normalized frame allowed for the better detection of regions of interest (ROIs) for 

segmentation (Fig. S1).  

Finally, due to the fact that sampling included coastal waters with high turbidity 

(from the Mississippi River plume), we calculated a signal-to-noise (SNR) ratio for each 

frame in order to filter out the highly noisy frames captured in turbid waters. The SNR 

was computed by first calculating a cleaned-up frame, or the “signal-frame”, which was 

simply done by applying a 3x3 median filter to the histogram normalized frame. The 

difference between the histogram normalized frame and the signal frame was then 

considered the “noise-frame”. SNR was then calculated as the log of the ratio between 

vector norm (l2-norm) values of the two images:  

𝑆𝑁𝑅 = 20 ∗ 𝑙𝑜𝑔10 �
�𝐹𝑠𝑖𝑔𝑛𝑎𝑙�
|𝐹𝑛𝑜𝑖𝑠𝑒|

�  (eq. 1) 

where Fsignal is the signal-frame, and Fnoise is the noise-frame, and the vector norm values 

was calculated using the OpenCV 2.4 ‘norm’ function, and is defined as: 

  |𝕏| =  �∑ |𝑥𝑘|2𝑛
𝑘=1 , where 𝕏 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛]  (eq. 2) 

After calculating the SNR on a set of representative images, we found a clear difference 

in SNR values between frames captured from turbid vs. not turbid waters (Fig. S2). Thus, 

we used a threshold cutoff of SNR=25 to discard extremely noisy images, which were 

approximately 26% of all frames originally captured. Note that through earlier efforts, we 

have found that images from highly turbid waters often require manual identification of 

images, so we sought to limit this study to images captured from more typically oceanic 
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waters. This exclusion of noisy images should be considered an effect of the sampling 

environment, rather than the image processing method, as images collected in oceanic 

waters rarely had high SNRs. 

 

Segmentation 

Pre-processed frames were then segmented using the ISIIS image segmentation 

software (Tsechpenakis et al. 2007, 2008, Iyer 2012, 

http://cs.iupui.edu/~gavriil/vital/MVISIIS). The segmentation software uses an 

unsupervised machine learning technique, K-harmonic means clustering, to detect ROIs 

from the raw images. Iyer (2012) tested six different clustering methods for segmentation 

(K-means, iterative K-means, fuzzy C-means, Isodata, Spectral algorithm, and K-

harmonic means), and chose the K-harmonic means method because it achieved the 

highest accuracy rates (95%) at relatively fast speeds and was easily implemented for 

parallel processing. In our implementation, we found that the segmentation process was 

further improved after the addition of the image histogram equalization step (see Image 

Pre-processing). Finally, the segmented images were given a unique name that refers to 

its time-stamp and location within the original frame. This naming convention allows for 

each image to be quickly associated with neighboring images, the original frame, 

shipboard GPS, and the environmental data recorded by the instrument. 
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Automated image classification 

Convolutional Neural Networks 

Segmented images were classified using convolutional (or deep) neural networks 

(CNNs), a method that is able to process images directly and automatically discover the 

characteristics within the images that are best suited for classification. Deep neural 

networks make use of the fact that natural images can be analyzed in a hierarchical 

fashion, with lower-level features organizing to form higher-level features (e.g. pixels to 

edges, edges to body parts, and body parts into organisms), and have been used in 

numerous applications from speech and face recognition (Lawrence et al. 1997, Hinton et 

al. 2012) to predictions of galaxy morphology (Dieleman et al. 2015). The four key ideas 

that characterize CNNs (local connections, shared weights, pooling, and the use of many 

layers) facilitate minimal pre-processing and require no prior knowledge in designing 

features for classification; this represents a significant advance compared with traditional 

machine learning methods such as ANNs and SVMs (LeCun et al. 2015).  

 Spatially sparse convolutional neural networks (SparseConvNets) were initially 

designed for the recognition of Chinese handwriting. SparseConvNets recognize that the 

background of an image often occupies many pixels and not processing them allows the 

CNN approach to be applied more efficiently, with less computational cost (Graham 

2014). Plankton images can also be considered “sparse images,” as the majority of the 

image, even in segmented images, is background. The actual particle or organism 
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occupies a relatively small percentage of the pixels in the image. Thus, not processing the 

background (white) pixels results in a much faster classification process.  

An application of SparseConvNets with Fractional Max-Pooling (Graham 2015) 

was initially developed as part of the Poisson Process team for the 2015 National Data 

Science Bowl competition (3-mo machine learning competition to classify ca. 60,000 

ISIIS plankton images within 121 categories; dataset available at Cowen et al. 2015, see 

competition solution at: www.kaggle.com/c/datasciencebowl/forums/t/13158/poisson-

process-competition-report-and-code/). For the competition, a number of similar models 

were used to generate an ensemble solution. We chose the best single model from team 

Poisson Process and made small modifications to improve overall speed with little 

apparent changes in accuracy. 

As opposed to artificial neural networks, which process images as vectors, 

convolutional neural networks process images as three-dimensional arrays. Images are 

represented in a computer as three-dimensional arrays with size NxNxC, where the first 

two dimensions (NxN) are spatial dimensions, representing the number of pixels in the 

image, and the last dimension (C) is the number of color-channels. In our case, the input 

image has dimensions of NxNx1, as there is only one color channel in monochrome 

images (RGB color images have C=3). However, the C dimension does not necessarily 

have to represent only true colors, but rather can be generalized and expanded to 

represent abstract “features” of an image. On a basic level, convolutional networks work 
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by going through an iterative process of collecting features and appending them as 2-

dimensional slices to the C dimension. These additional abstract color-channels are 

‘value-added’ images, as they represent increasingly higher-level features, as the 

algorithm progresses from the bottom of the network to the top. Examples of features that 

would be detected at the bottom of the network include edges or combinations of edges, 

and at the top of the network, these features would be something biologically relevant, 

such as tails or antennae. These collections of features are constructed by a numerical 

optimization technique which involves iteratively showing the network training images 

from which it can learn discriminative features useful for classification. 

Our network is constructed as a sequence of two alternating types of layers, 

termed convolutional and pooling layers. Convolutional layers form the main building 

block for CNNs, as they detect local combinations of features. Pooling layers operate by 

merging semantically similar features into one (for a general description, please see 

LeCun et al. 2015). The network has 13 convolutional layers in total, separated by 12 

pooling layers. The n-th convolutional layer looks at overlapping 2x2 pixel regions of the 

image below, producing an output image with 32*n color-channels. The number of color-

channels increases as we rise through the network in the expectation that we will produce 

an increasingly rich description of the contents of the image. The interleaved pooling 

layers reduce the spatial size of the input image, but leave the number of color-channels 

unchanged. We use fractional max-pooling with scaling factor of 1/√2. The scaling is 
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multiplicative, so the image shrinks exponentially as we climb the network. This 

reduction in resolution offsets the increase in the number of color-channels, ensuring 

computational feasibility. After the last convolutional layer, we calculate the average of 

each color-channel over the spatial dimensions. We then perform multinomial logistic 

regression on the set of color-channel features to predict the class of the image. We used 

the SparseConvNet (https://github.com/btgraham/SparseConvNet) software package, 

which takes advantage of the sparsity of the images to reduce the computational burden, 

to train the convolutional neural network. 

 

Network training 

42,564 images were manually sorted in 108 classes to serve as a training set. We 

used 100+ classes to accurately represent the taxonomic diversity in the data (Fig 4). 

Initially, we started with a training set that was a subset of the data (not shown), which 

represented the actual proportions of objects in each class, but refined the training set by 

adding in rare classes. Since we were most interested in rarer groups (e.g., larval fish, 

jellies, etc.), they were inflated to provide a greater number of representative samples for 

the training set. The total number of images in each class of the training set is provided in 

Table S1.  

 In addition, at each `epoch`(i.e. training cycle), SparseConvNet picks examples 

from the training set and performs data augmentation (randomly rotates, skews, and 
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scales each image), hence creating subtle variations of the original shapes and simulating 

new training examples. This procedure is fairly common in CNNs and helps to generalize 

a model based on a limited set of examples. 

We trained for 150 epochs, as this represented the point at which the error rate 

plateaued at a minimum value (14.9-15.1%). Using a g2.2xlarge instance on the Amazon 

elastic computing cloud (one NVIDIA GPU with 1536 CUDA cores), training 150 

epochs took ca. 24 hours.  

 

Model predictions 

To make the prediction robust, each of the 23.4M images in the full data set was 

passed through the fitted network 24 times, each time with different data augmentation 

parameters. The probabilities for each object to belong to each class, predicted by the 

model, were averaged over the 24 predictions, the maximum was found, and the 

corresponding class was considered as the predicted class. Total prediction time was 165 

machine hours (though < 36 actual hours, as we used five GPU instances in parallel). 

 

Classification groupings 

The 108 original classes in the training set were mapped onto 37 broader groups, 

which represented taxonomic or functional groupings that were more relevant for 

ecological analyses (Fig. 4, Table S2). For example, many of the original classes were 
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created for automated image classification purposes, with the distinctions between classes 

only morphological (e.g., straight vs. curved appendicularians) or due to an imaging or 

segmentation artifact (e.g., cropped bells and tentacles). Others were created to 

distinguish between different forms within a diverse class (e.g., detritus) that would 

otherwise pollute many other classes. Lastly, some taxonomic classes were grouped 

together for filtering purposes and further analyses (e.g., the fish groups). 

 

Model performance 

Confusion matrices (CMs) are a tool for quantifying classifier accuracy (e.g., Hu 

and Davis 2005, Bi et al. 2015). The calculated CM statistics included three values and 

three rates, calculated separately for each class i: values were numbers of true positives 

(TPi), false positives (FPi, type I error), and false negatives (FNi, type II error). The rates 

calculated were precision (Pi, eq. 3), recall (Ri, eq. 4), and the F1-score, which is the 

harmonic mean of the precision and recall rates (F1i, eq. 5). For a given class, precision 

quantifies the “purity” of the prediction and recall quantifies the “completeness” of the 

prediction. 

Pi = TPi / (TPi + FPi)     (eq. 3) 

Ri = TPi / (TPi + FNi)     (eq. 4) 

F1i = 2 × Pi × Ri / (Pi + Ri)    (eq. 5) 
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A self-prediction of the training set and the associated CM represent the 

theoretical maximum of the classifier performance. It was computed to give a benchmark 

for determining which classes had naturally high variability and which ones were 

relatively homogenous (Table S1). 

To evaluate the classification success on the full dataset, we performed spot-

checks: 75,000 predicted images were picked randomly (0.30% of the total dataset) and 

their identification was manually validated. The corresponding CM is shown in Table S2 

(see column “Without Probability Filtering”). 

 

Probability filtering 

In the full dataset, images of organisms spanned the range in terms of quality: 

small (e.g., early life stage) to large (e.g., adult), blurry to clear, oriented towards, away, 

or to the side of the camera, etc. Thus, the images that were more difficult to predict, or 

less archetypal often were associated with a low prediction score. The prediction score is 

an output of any classification algorithm: for each candidate image, the algorithm 

computes a score (often a probability) associated with every category in the training set. 

Classification is then just a matter of picking the maximum score. However, for difficult 

to identify objects that could fit in many classes, even the maximum score can be low, 

reflecting a low confidence in the classification. Therefore, we used this score to filter 

classified images into “high” vs. “low” likelihood of correct classification using a 
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threshold value set for each class. Faillettaz et al. (2016) first demonstrated this approach, 

showing that the removal of “low-confidence images” (in their case, over 70% of their 

original dataset) still allowed for the prediction of true spatial distributions of many taxa. 

In the present study, we determined the appropriate threshold values for each 

class by predicting a new, independent, 43,000-member test set. All images in this test set 

were manually identified, which allowed us to detect prediction errors. For each class, we 

set the threshold value to be the classification score above which 95% of images were 

correctly classified into the corresponding group (as opposed to the class itself). Groups 

were used because many of the 108 classes were separated based on morphological 

distinctions with little ecological relevance (e.g., “chaetognaths curved” vs “chaetognaths 

straight”). The 95% level, which resulted in 29.6% of images discarded (though 

individual classes varied, Table S3), was chosen as a compromise between improving 

classification accuracy and retaining enough images for ecological analyses. As a 

comparison, if the thresholds were set at the 90% level, then only 19% of images would 

be cut, but at 99% level, then 63% of all images would be discarded.  

The discarded, “low confidence images”, were put into the “unknown” category. 

Since this affected some of the 75,000 randomly selected images used to compute the 

confusion matrix, a post-filtering confusion matrix was then recalculated. The differences 

between the CM stats before vs. after probability filtering are shown in Table S2, and the 
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section “With Probability Filtering” gives the CM for the final processed dataset, which 

can be used for future ecological studies. 
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RESULTS 

A total of 2.4 million raw ISIIS frames (nearly 40 hours of imaging, 10 TB data) 

were collected from eight transects in the northern Gulf of Mexico. The raw ISIIS frames 

were segmented into 23.4 million images (27 GB), and classified into all 108 categories 

(Table S2). After filtering, 64.3% of the images were retained, and 35.7% discarded. 

Aside from the detritus and artifact images, there were 1.62 million images of 

phytoplankton and protists and 1.37 million images of mesozooplankton. 

 

Training set prediction: accuracy benchmarks 

 Overall, the F1-score (the harmonic mean between precision and recall) for all 

classes was 88.1, with 67% with a F1-score over 90, and 83% with a F1 score over 80. 

The hardest classes to predict were the fish classes, with a mean F1 score of 70.7 (e.g., 

myctophid fishes were often confused for other types of fishes), and the easiest classes to 

predict included the protists (mean F1 of 98.0), cyclopoid copepods (mean F1 of 96.1), 

and chaetognath classes (mean F1 of 93.4) (Table S1). At the group level, the F1-scores 

increase, such that the lowest was 85.6 (physonect siphonophores), and 70% had F1-

scores of 95 or above (Table 1). 

 

Image filtering and confusion matrices 
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In total, filtering removed 30% of all images, though this percentage differed by 

category. Out of 108 categories, 26 were well-predicted (over 60% retained after 

filtering), including the diatom chains, chaetognaths, dark detritus, protists, doliolids, and 

three calanoid copepod classes. Many of these 26 classes also fell within the top quarter 

in terms of numerical abundance (10 classes, containing 18.1 out of 23.4 million images). 

In particular, the main artifact class (imaging artifacts, as opposed to detritus), which 

comprised over 8.2 million images, or 35% of the total, were well-predicted, and over 

93% were retained. However, the well-predicted classes were not only the common 

classes, since some of the rare but morphologically monotypic (e.g. the cestid 

ctenophores and goby fishes) also performed very well. In contrast, 22 classes were very 

heavily filtered, where less than 10% were retained. These classes included six (out of 

14) hydromedusae, five (out of 19) fish, two polychaete worms, two siphonophores, one 

copepod and one shrimp, and tended to be the less common but morphologically diverse 

classes (Table S3).  

Results from the 75,000 random spot-checks showed that filtering improved the 

mean classification precision rate at the group level by 33 percentage points, from 53% to 

86% precision (Table S2). If only the biological groups were considered (thus excluding 

artifacts, detritus, and unknown, which was nearly 80% of the dataset), this increase was 

just slightly greater, from 51% to 87% precision. Twelve of the biological groups had less 

than 25 randomly drawn images (Table S2, also marked in grey in Table 1); these groups 
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were very rare, each representing less than 0.12% of the total biological data. Excluding 

the rare biological groups, the precision rate after filtering was 89.7%.  

Naturally, using the filtering thresholds decreased the total recall rate, by 19 

percentage points, from 63% to 44%. For the non-rare biological groups (n=23), the 

decrease was greater (22 points), but final recall rate was higher (47%). However, the F1-

score, which is the harmonic mean of the precision rate and recall rate, only increased 

slightly, from 54% to 55%, 

The final classification comparison was conducted between the (post-filtering) 

classifier and the training set, which represents the difference between a full dataset 

classification and the theoretical maximum for a classifier (Table 1). On the full dataset, 

classification precision was actually close to, or even exceeded that of the training set, 

which was possible because of the application of the filtering thresholds. Despite the 

corresponding decrease in the recall rate, a comparison of F1-scores showed that a few of 

the biological groups had a less than 10-point difference (Oithona copepods, sergestid 

shrimp, and ablyid siphonophores). Groups that were less common, or had a lot of natural 

variability, such as other shrimp, pteropods, and cydippid ctenophores, showed a much 

greater difference, of 70-80 points, which was largely due to low recall rates post-

filtering. However, the average difference in F1-scores for the (non-rare) biological 

groups was 40%, representing a moderate difference between the final classifier and the 

training set.  
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DISCUSSION 

We demonstrate the successful application of an image processing procedure, 

using a deep learning convolutional neural network, to classify a ~40 hour, 10 TB in situ 

plankton imaging dataset containing 25 million image segments into 108 classes. After 

applying a filtering threshold on the classification probabilities, and grouping the classes 

into 37 taxonomically and functionally meaningful groups, the average classifier 

precision on non-rare biological groups (n=23) was 90.1%, which is higher than any 

previous attempt on high sampling volume, in situ plankton images. 

Since Culverhouse et al. (2003) published a finding that trained personnel are 

only able to achieve 67-83% self-consistency on an expert plankton classification task, 

that range has existed as a sort of de facto benchmark within the plankton imaging field 

in which computer classification can be considered to be as good as human classification 

(e.g. Hu and Davis 2005, 2006). In reality, Culverhouse et al. (2003)’s findings were 

specific to a difficult identification task, in which morphologically variable dinoflagellate 

species (genus Dinophysis) were being distinguished from each other. For in situ 

plankton images, it is not very difficult for a human to distinguish between broad 

plankton community-based groups (e.g. calanoid copepods, shrimps, and larval fish), but 

rather, the difficulty only lies when distinguishing within certain taxa (e.g. between larval 

mesopelagic fishes, or between small decapod shrimps). Of course, classification 

difficulty may vary due to environmental conditions and ecosystem composition. 
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Nonetheless, we suggest that this benchmark should be revisited, and raised to at least 

90%. In manual sorting for the present dataset as well as others with 120+ classes (e.g. 

Cowen et al. 2015), the proportion of unknowns, in which an expert operator is unable to 

sort the image, ranged from < 1% for 30-35 classes to ca. 5% for 120-130 classes. In the 

present case, application of a method incorporating deep machine learning and filter 

thresholding resulted in over 90% precision on all the non-rare biological groups; this 

approaches the point in which we may consider an automated classifier to be as good as a 

human operator in sorting common plankton groups at higher taxonomic levels. 

Application of the Faillettaz et al. (2016) filtering method gives us the ability to 

select for the highest probability images, and subsequently manipulate the precision 

levels (and by association, the recall rates) in the final classifier. Without filtering, the 

raw SparseConvNet classification precision and recall for the dataset would have been 

53% and 63%, respectively. The filtering step modified the classification statistics 

(resulting in 84% precision and 40% recall for all groups), but allowed us to ensure the 

best description of biological patterns, which was important given the scientific goals of 

the image analysis procedure. Applying a classification filter would probably increase the 

overall performance of other previously published classification schema, and would 

likely temper the difference between our results and those earlier studies. Secondarily, we 

also note that it is not sufficient to judge a classifier by the class precision alone; the 
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recall rate must also be incorporated. We therefore propose a more widespread adoption 

of the F1-score, which is the harmonic mean of the precision and recall.  

Convolutional neural networks represent a significant advance over traditional 

machine learning methods, because they are designed to learn and automatically extract 

feature descriptors (LeCun et al. 2015). Aside from the construction of the neural 

network architecture, the single most important factor determining the success of the 

classifier was the training set. Fernandes et al. (2009) had proposed a computer-assisted 

method for determining the optimal number of classes (settled on 30), using a Tree-

Augmented Naïve Bayes classifier. In our case, since deep learning methods are capable 

of classifying many more classes, we manually defined 108 classes and then grouped 

them into 37 groups after classification, but future efforts with CNNs should utilize some 

amount of computer assistance in determining the identity and quantity of classes.  

Deep learning methods require large amounts of training data, and our 42,000 

item training set for 108 categories was likely on the low end; significant amounts of data 

augmentation was necessary. However, this is still an order of magnitude greater than the 

training sets used by traditional machine learning plankton image classifiers: Hu and 

Davis (2006) used 200 images per class for seven classes, Bi et al. (2005) used 210 

images total for three classes, and Faillettaz et al. (2016) used 5,979 images for 14 

classes. Our choice of using a "natural" training set, where rare classes were augmented 

but not to the quantity of the most common classes, was a decision following our broader 
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research objectives of describing mesozooplankton (including larval fish) distributions. 

These organisms are relatively rare, especially compared to protists and diatom chains, 

and thus needed special attention within the training set. Augmenting rare groups in the 

training set is naturally a time-consuming process. However, if the scientific objective of 

the image analysis system were to classify the detritus and common phytoplankton, then 

a more representative training set would achieve higher accuracies (Chang et al. 2012). 

Furthermore, to the extent possible, it was necessary to include the range of images, from 

the best (clearest, sharpest) image to the worst (most ambiguous, blurry) image, and to 

divide classes not only by taxonomy, but also morphological differences. Still, there were 

classes that did not perform very well (e.g., “shrimp other”), but were too difficult to 

separate further. 

The development of our classifier (an application of the Spatially-Sparse 

Convolutional Neural Network, Graham 2014, 2015) was achieved following the 2015 

National Data Science Bowl, a Kaggle.com machine learning competition. For the 

competition, we used the same ISIIS imaging system as in the present paper, but data 

from a different sampling region (Straits of Florida; competition data available at Cowen 

et al. 2015). While crowd-sourcing and machine learning competitions are not within the 

scope of the present paper (but discussed in Robinson et al. 2017), there were some key 

lessons we learned through the process that determined the successful application of the 

present classifier. First, in many competition settings, teams submit results that are an 
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average of multiple models, also known as ensembles, which are computationally 

expensive and not necessarily the most realistic for real-world use. Therefore, it was 

critical to identify the single best model, which may or may not be part of the best 

ensemble (it was not in our case). Second, further development of the classification 

scheme was necessary after the competition ended. Essential to our success was the 

inclusion of a bio-computing specialist who could bridge the gap between the biologists 

and the computer scientists. Finally, the design of the competition dataset was also highly 

important, as it determined the types of solutions that emerged. We found that it was 

essential that the dataset had all the qualities of a good training set (ratio of images within 

rare vs. common classes, inclusion of high and low quality images, and separation of 

classes by taxonomy and morphology). These three key points facilitated the successful 

transfer of an image classifier between the competition and the present context. 

As plankton datasets, both physical (e.g. the Continuous Plankton Recorder 

archive) and digital (the growing ISIIS collection), get larger and more comprehensive, it 

is critical to note that the amount of samples to sort at a particular taxonomic resolution 

will always depend on the scientific question and the time available for analyses. For 

some questions, such as the spatio-temporal variability in ichthyoplankton distributions 

(Richardson et al. 2010) or the niche shift of sibling species (Beaugrand et al. 2002), 

manually sorting physical samples to the genus or species level is necessary, but in those 

cases, only a relatively small number of organisms can realistically be sorted. For other 
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questions, such as the fine-scale distribution of broad taxonomic groups, the complete 

analyses of samples collected by high throughput imaging systems is most adapted. In 

that case, manual sorting would be time prohibitive, especially with increasing numbers 

of classes (we estimate that sorting into 40-50 classes, which can be done at 5,000 images 

d-1, occurs at roughly half the rate of sorting into 10-15 classes). Therefore, computer-

assisted or fully automated classification becomes more expedient. Even the necessity of 

creating a training set, with associated independent test set, for each sampling region is 

time consuming (by our estimates, ca. 2-3 mo.). The future development of a master, 

global-level training set with regional filters could facilitate a more rapid image 

classification process. This could eventually lead to a minimal amount of manual 

identification work for each additional dataset (i.e. for spot-checks for the final confusion 

matrix, which would yield a class-specific correction factor for densities). The 

combination of the speed of classification, use of 100+ classes, high precision, and only 

needing to do small amounts of manual sorting would significantly increase the utility of 

plankton imaging systems, as we will be able to classify millions to billions of in situ 

plankton images quickly and accurately. 

It is evident that with the recent interest in plankton (e.g. from the Tara Oceans 

project, Bork et al. 2015) that there are many additional questions and areas for 

exploration regarding the base of the marine food chain. Imaging systems are inherently 

complementary to net-based sampling; physical samples are always going to be necessary 
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for ecological questions requiring fine taxonomic resolution and the analysis of hard 

structures (e.g. otoliths), isotopes, or genetics. However, large-volume imaging systems 

can be particularly useful for addressing questions regarding rare, gelatinous, or large 

organisms in the context of predator-prey dynamics, horizontal and vertical aggregations, 

and fine-scale relationships to the environment. Plankton imaging systems can also 

provide important validation data for regional and global ocean ecosystem models, which 

suffer from insufficient data for constraining patterns and processes. The development of 

whole, integrated pipelines for plankton image analysis can enhance the utility of 

automated classification tools, and can eventually lead to the goal of real-time image 

processing done at sea. Combined with some net-sampling for taxonomic validation, 

plankton imaging systems can be an incredibly powerful tool, with applications in ocean 

monitoring and fisheries management, as well as in addressing many of the fundamental 

questions still existing within plankton ecology.   
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